
Abstract- A method for baseline (BL) removal in needle EMG 
records is presented. Different processing techniques are 
sequentially used. Firstly motor unit action potentials (MUAPs) 
are extracted from the signal by means of a wavelet transform-
based procedure. Potential-free, discontinuous segments are thus 
obtained, whose fluctuation is assumed to be related to BL 
wander. These signals are then time averaged to attenuate the 
effect of noise and of low amplitude MUAPs originated distant 
from the electrode. Spline interpolation is then used to build a 
continuous reconstructed signal whose spectral characteristics 
approximate that of the real BL. The spectrum of this signal is 
estimated by AR modeling and an FIR filter is implemented 
accordingly for  filtering out the BL low frequency components 
from the original EMG signal. Two merit figures are devised, 
which measure the degree of BL fluctuation present in an EMG 
record. These figures are used to compare our method with the 
conventional approach which consider the BL to be a constant 
value. Experiments for BL removal from real and simulated 
EMG signals are carried out. The superior performance of our 
approach is shown regarding these merit figures and visual 
inspection. 
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I. INTRODUCTION 

 
Motor unit action potential (MUAP) expresses the 

electrical activity of the muscle fibers of a motor unit (MU) 
recorded from a needle electrode. The shape of MUAP 
waveforms, and their similarity in consecutive appearances 
contain valuable information about the state of a muscle, 
helping to distinguish between myopathic, neurogenic or 
normal states and to measure the degree of abnormality. 
MUAP analysis is thus a daily-work procedure in clinical 
electromyography (EMG). For MUAP characterization 
different parameters are used: duration, amplitude, area, 
number of turns and phases, jiggle, etc. [1], [2]. The 
measurement of these parameters is influenced by  baseline 
(BL) fluctuation along the recorded signal. Particularly 
relevant is this influence on duration, and jiggle (as measured 
by the CAD parameter [2], [3]), as these include in their 
definition amplitude criteria with respect to the BL. Therefore 
a precise estimation of the BL will help making 
measurements of these parameters more accurate. 
Current methods consider the BL to be constant throughout 
the MUAP: they either average the samples in the segments at 
both ends of the MUAP discharge (typically 3 ms segments 
are taken in 25 ms registers in which the main spike of the 
MUAP occupies the central position) [1]; or else just give the 
BL a zero level (system ground). 
We regard the BL as a low frequency fluctuation present in 
the recorded signal (Fig. 1) due to artifacts of different nature: 

the movement of the recording needle relative to the muscle, 
variation of skin potential induced by the needle, electrical 
drifts in the acquisition equipment, etc. But above all, the 
main source of BL fluctuation is the activity of distant MUs, 
which produce potentials that cannot even be identified as 
MUAPs, as they only provoke a mild BL wander. In the EMG 
signal, there also appear “secondary” potentials, not to be 
confused with the previous. They originate relatively far from 
the electrode and are low-amplitude and smooth, and thus not 
valid for EMG clinical analysis, but still considered as real 
MUAPs and not as BL components. 
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Several methods for BL removal have been applied to other 
biomedical signals, such as ECG [4], [5]. They heavily rely 
upon “a-priori” knowledge of the BL frequency band. In 
EMG, BL frequency components are not too well known and 
are subject to high variability across different muscles, 
individuals and recordings. In the method we present in this 
paper several signal processing techniques are used to 
estimate the spectrum of the BL present in an EMG 
recording. A convenient filter is then used  to filter out the BL 
frequency components. 

 
II. MATERIAL 

 
Twenty EMG real signals from the right tibialis anterior 

muscle of a 39 year-old healthy man were analyzed. The 
EMG signals were recorded at different degrees of voluntary 
contraction using an electromyograph (Counterpoint, Dantec 
Co., Denmark) and disposable concentric needle electrodes. 
After antialiasing filtering, signals were sampled at 2.4 kHz (a 
higher sampling frequency was not required in this study). 
Ten simulated signals were also analyzed. Real MUAP 
waveforms and secondary potentials were taken as templates 
to form MUAP trains. Templates were repeated at a 
determined frequency (between 3 and 12 Hz) for each 

 
Figure 1. EMG recording: several MUAPs appear on top of a  

time-varying baseline contamination. 
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different train) which was not constant but subject to a small 
random variation (�2 Hz). Simulated signals were composed 
of several MUAP trains (between 1 and 5) and corrupted by a 
secondary potential, white gaussian noise (SNR between 30 
and 43 dB) and BL fluctuations (SNR between 14.6 and 28.7 
dB). The BL was simulated by filtering zero-mean white 
gaussian signals with a low-pass Butterwoth filter [6] (cut-off 
frequencies between 5 and 20 Hz). The characteristic of both 
signal sets exhibited  wide variation with respect to the degree 
of activity (number of present MUAPs), MUAP duration and 
spectral range of BL fluctuation. 
 

III. METHODS 
 

The method comprises several sequential phases: 
a) estimation of EMG activity level; 
b) segmentation of the EMG signal into segments 

containing MUAPs and free-MUAP segments (BL); 
c) BL spectral characterization; 
d) BL filtering. 
In each phase, different alternatives were tested and those 
which yielded better results were selected. In the sequel we 
describe these phases. 
 
A. Estimation of the level of EMG activity  

The number of MUAPs present in an EMG recording (i.e., 
level of EMG activity) depends on the contraction level of the 
muscle. With a low contraction level, few MUs are activated 
and the record presents relatively long and steady BL 
segments, with scattered MUAPs. As the contraction force 
increases, more MUs are recruited and the level of EMG 
activity increases while the BL segments without MUAPs 
become fewer and shorter. We use the number of spikes per 
ms as a quantitative measure of the level of EMG activity. 

  
B. MUAP detection 

This phase focuses on the MUAP detection and isolation 
from BL segments, making use of the discrete wavelet 
transform (DWT). Specifically the non-orthogonal quadratic 
spline wavelet is used, which has been successfully utilized 
for the detection of characteristic points in ECG signals [7]. 
The detection algorithm is similar to that presented in [7] and 
its applicability is also sustained by the fact that the uniphasic 
(only-one-peak) shape of this wavelet resembles that of  the 
uniphasic basic components conforming the EMG waveform. 
Similarly to the QRS detection in EEG, MUAP maxima, 
minima and zero-crossing points are detected in the EMG 
signal, and from these, MUAP initial and end points. This 
part of the process is further split in two subphases: 
determination of the active segments (AS), (i.e., those signal 
portions mainly occupied by MUAPs), and fine estimation of 
the span of these segments. 
 
B.1. Determination of AS. Several steps are carried out: 
- DWT computation of the EMG signal and selection of the 
scale containing most energy (Fig. 2.a); 
- First splitting of the signal in active and BL segments: as 
BL samples normally dwell in a narrower amplitude range 
than MUAP samples, a histogram with the EMG samples (in 

the wavelet domain) is built  and those samples whose 
amplitudes appear in the least frequently bin are assigned to 
AS, while the rest are assigned to BL segments (see 
thresholds in Fig. 2.a). Histograms of 20 to 100 bins were 
tested, finding 40-bin histograms as the most convenient. 
-  Determination of maxima and minima: maxima and 
minima in AS are detected and considered belonging to 
different MUAPs or superposition of MUAPs when a 
maximum is followed by a minimum or vice versa and when 
these are at least �t ms apart. We experimentally set up a 
suitable relation between this delay and the EMG activity: 
(low activity: �t=9ms, low-mid activity: �t=11ms, mid-high 
activity: �t=13ms, high activity: �t=17ms). 
- AS extraction: initial and final AS points are estimated by: 
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where firsti and endi refer respectively to the first maximum or 
minimum and the last maximum or minimum pertaining to a 
certain MUAP or MUAP superposition, and i indexes the 
different MUAP or MUAP superposition.  
 
B.2. Fine estimation of the initial and final points of the 
identified AS (Fig. 2.b). Several steps are carried out, some of 
them equivalent to those in Subphase B.1: 
- DWT computation of the EMG signal and selection of the 
scale containing most energy. 
- Second splitting of the signal in active and BL segments: a 
new histogram-based splitting process, similar to the one 
previously described is carried out, obtaining more restrictive 
AS. Here a 40-bin histogram was also chosen. 
- Isolated peak elimination: due to the MUAP morphology, 
the maxima and minima of the DWT signal should appear 
alternately. Peaks altering this disposition are removed. 
- Look for relevant unconsidered peaks: some low 
amplitude MUAPs may have skipped from the previous 
processes. They are search for at either side of the AS, using 
wavelet domain amplitude thresholds, peak-to-peak 
separation time and sign alternation restrictions. 
- Determination of the potential beginning: the onset of the 
first maximum or minimum in the wavelet transform  
provides the beginning of the MUAP or MUAP superposition 
[7]. The DWT causes an artificial delay of   2j-1-2 samples 
which has to be discounted. 
- Determination of the potential end: the end point of the 
last peak is taken as the end of the potential.  
 
C. BL analysis and spectral characterization 

BL spectral characterizing is carried out in this phase, by 
means of the following steps: 
- Averaging of free BL segments: The detected free-BL 
segments may still contain secondary potentials (low-
amplitude, smooth potentials coming from distant MUs) as 
well as high-frequency noise from diverse origins. To reduce 
the influence of these artifacts in BL estimation, consecutive 
samples of these segments are averaged (Fig. 2.c). After 



testing several intervals lengths (between 3 and 20 ms), 
intervals of 10 ms were chosen as the most convenient. 
- Interpolation: the previously averaged points are 
interpolated by means of cubic splines, resulting a curve with 
the appearance of a true BL fluctuation (Fig. 2.c).  
- BL spectral characterization: AR spectral estimation  [6] 
is applied to the interpolated signal giving a smooth and high 
resolution power spectral density (psd) (Fig. 3). As expected, 
the resulting psd corresponds to a low frequency signal (BL 
estimate). Its 3-dB bandwidth is then obtained. 

 
D. Filtering (Fig. 2.d) 

For the final BL removal, the EMG signal passes a high-
pass filter with a cut-off frequency equal to the previous 3-dB 
bandwidth. A linear phase FIR filter is used so to preserve 
phase relations among different signal components. We used 
Remez interchange algorithm for the design of this filter [6]. 

 
IV. RESULTS 

A. Merit figures 
Quantitative evaluation is needed to compare BL removal 

methods. Two merit figures (F and N) are devised for 
measuring the degree of BL fluctuation in repeated discharges 
of the same MU. They are calculated as follows: 

1) All the waveforms in the EMG record corresponding 
to non-overlapped MUAPs are manually selected. 
2) These discharges are given time origins so that 
correlation among them is maximum. 
3)  Let Yk=� yk(1), yk(2), . .,  yk(n)� be the discharge k of 
the set of n discharges, where yk(t), is the t sample of Yk . 
The two proposed merit figures are defined as: 
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(first the temporal mean of every discharge is calculated; 
then the standard deviation of all these means is computed). 
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(standard deviation across different discharges is calculated 
for every sample time; the resulting set of values are then 
averaged). 

BL removal methods can be compared using these figures: 
lower F and N values are attained when lower BL fluctuation 
remains, indicating thus better performance. 
To first test the validity of F and N, they were used to 
measure two different sets of simulated signals. The first set 
was made out of 3 different MUAP trains to which noise (33 
dB SNR level) and an artificial BL of varying amplitude 
(from A to A/6) and low frequency range (5Hz) were added. 
Table I shows the obtained F and N. Their increasing values 
with BL growing amplitude, credited these figures as good 
indicators of the degree of BL fluctuation. In the second set, 
the same MUAP trains were contaminated by additive noise 
(33 dB SNR level) and an artificial BL of different frequency 
ranges (5, 7, 10, 15 and 19 Hz). Although F and N also 
increased with BL frequency content (Table I), this tendency 
was not so notorious, not contradicting the previous claim. 

 
Figure 2.a. DWT and amplitude histogram-based thresholds. 

 
Figure 2.b. Active segments (separated by dashed and continuous lines). 

 
Figure 2.c. Free-BL averages (x) and interpolated curve. 

 
Figure 2.d. Final BL-corrected signal. 



 
Figure 3. EMG signal spectrum (a), estimated BL (difference between initial 

signal and final filtered signal) spectrum (b), AR model spectrum (c), and 
high-pass filter frequency response (d).  

 
B. Results from simulation and real signals 
Table II shows the mean and standard deviation of F and N 
values obtained by the conventional method [1] and ours, 
when applied to the sets of real and simulated signals. The 
significant lower values manifest the superior performance of 
our method. 
 
C. Visual assessment. 

Visual inspection of the analyzed signals proved 
satisfactory results (compare Fig. 1 and Fig. 2.d), except in 
the extreme cases of high activity level or the presence of 
potentials with unusually long tails. 

 
IV. DISCUSSION 

 

It can be noticed that the differences between successive 
occurrences of the same bioelectric phenomenon (i.e., MUAP 
discharges) are lower when our method is applied than when 
simply removing a constant BL level. From this we infer that 
BL cause an artifactual fluctuation that our method is able to 
counterbalance in some extent. 
 

TABLE I 
 F and N values of the three motor units (MU 1, 2 and 3) composing the 

simulated EMG records with varying degrees of BL amplitude and frequency 
content. 

MU 1 MU 2 MU 3  
F N F N F N 

A/6 40,5 41,8 11,9 15,0 26,9 28,6 
A/5 48,1 49,2 14,2 17,1 32,3 33,7 
A/4 59,4 60,4 17,8 20,6 40,4 41,6 
A/3 78,4 79,12 23,7 26,6 53,9 55,0 
A/2 116,3 117,0 35,5 38,8 80,9 81,9 

BL 
amp. 

A 230,0 230,7 70,9 76,3 161,8 163,2 
5 59,5 60,4 17,8 20,6 40,4 41,6 
7 51,0 52,3 36,1 37,2 76,5 77,1 

10 53,3 55,7 77,6 79,8 83,1 84,3 
BL 

freq. 
15 74,9 79,1 54,9 71,3 99,2 101,7 

 
TABLE II 

F and N mean and standard deviation values obtained by 
 the conventional method  (Orig.) and ours (New). 

F N  
Mean (std) T-test Mean (std) T-test 

Orig. 143,7 (260,1)  387,5 (325,8) Real 
signals New 129,9 (254,8) 

p < 
0,01 381,9 (328,1) 

p < 
0,01 

Orig. 59,8 (33,4) 77,5 (54,8) Simul. 
Signals New 37,0 (23,4) 

p < 
0,001 53,76 (54,7) 

p < 
0,010 

When the EMG signal contains waveforms with small-slope 
and long tails, determination of their ends points may turn 
hazardous. In such cases averaging cannot fully cope with 
these terminal waveform portions, and spectral 
characterization becomes inaccurate. 
In the case of high EMG activity the method efficacy is  also 
reduced: as this activity grows, free-BL segments are sparser 
and shorter, splines curvature is abnormally high in the 
interpolated curve, and the BL course is not followed too 
precisely, yielding a final  distorted estimation of the BL 
spectrum. However, this limitation is not too problematic as 
EMG signals with such activity levels are unacceptable for 
clinical practice. 
The proposed BL removal method can be used for obtaining 
more precise measurements of the conventional MUAP 
parameters [1], [2], although the potential benefit of this 
enhancement has still to be explored.  Moreover, being a 
method designed to be applied on free-run EMG signals, it 
may eventually be implemented as part of EMG 
decompositions systems for automatic MUAP extraction. 

 
 

V. CONCLUSIONS 
 

The proposed method for BL removal, based in frequency 
characterization of MUAP-free EMG segments has proven 
superior to conventional procedures, that consider the BL to 
be constant along the MUAP record or the whole EMG 
signal. Its main limitation is the presence of MUAPs with a 
long tail that cannot be completely put aside from the BL 
segments, altering thus the BL frequency estimation. 
Its potential use for enhancing MUAP parameter 
measurements and real-time acquisitions appears promising. 
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